Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.240
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38561536

RESUMO

The research aimed to determine the influence of endophytic fungi on tolerance, growth and phytoremediation ability of Prosopis juliflora in heavy metal-polluted landfill soil. A consortium of 13 fungal isolates as well as Prosopis juliflora Sw. DC was used to decontaminate heavy metal-polluted landfill soil. Enhanced plant growth (biomass and root and shoot lengths) and production of carotenoids, chlorophyll and amino acids L-phenylalanine and L-leucine that are known to enhance growth were found in the treated P. juliflora. Better accumulations of heavy metals were observed in fungi-treated P. juliflora over the untreated one. An upregulated activity of peroxidase, catalase and ascorbate peroxidase was recorded in fungi-treated P. juliflora. Additionally, other metabolites, such as glutathione, 3,5,7,2',5'-pentahydroxyflavone, 5,2'-dihydroxyflavone and 5,7,2',3'-tetrahydroxyflavone, and small peptides, which include Lys Gln Ile, Ser Arg Ala, Asp Arg Gly, Arg Ser Ser, His His Arg, Arg Thr Glu, Thr Arg Asp and Ser Pro Arg, were also detected. These provide defence supports to P. juliflora against toxic metals. Inoculating the plant with the fungi improved its growth, metal accumulation as well as tolerance against heavy metal toxicity. Such a combination can be used as an effective strategy for the bioremediation of metal-polluted soil.

2.
Chemosphere ; 356: 141873, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593958

RESUMO

Phthalic acid esters (PAEs) are byproducts released from various sources, including microplastics, cosmetics, personal care products, pharmaceuticals, waxes, inks, detergents, and insecticides. This review article provides an overview of the literature on PAEs in landfill leachates, exploring their identification, occurrence, characteristics, fate, and transport in landfills across different countries. The study emphasizes the influence of these substances on the environment, especially on water and soil. Various analytical techniques, such as GC-MS, GC-FID, and HPLC, are commonly employed to quantify concentrations of PAEs. Studies show significant variations in levels of PAEs among different countries, with the highest concentration observed in landfill leachates in Brazil, followed by Iran. Among the different types of PAE, the survey highlights DEHP as the most concentrated PAE in the leachate, with a concentration of 89.6 µg/L. The review also discusses the levels of other types of PAEs. The data shows that DBP has the highest concentration at 6.8 mg/kg, while DOP has the lowest concentration (0.04 mg/kg). The concentration of PAEs typically decreases as the depth in the soil profile increases. In older landfills, concentrations of PAE decrease significantly, possibly due to long-term degradation and conversion of PAE into other chemical compounds. Future research should prioritize evaluating the effectiveness of landfill liners and waste management practices in preventing the release of PAE and other pollutants into the environment. It is also possible to focus on developing efficient physical, biological, and chemical methods for removing PAEs from landfill leachates. Additionally, the effectiveness of existing treatment processes in removing PAEs from landfill leachates and the necessity for new treatment processes can be considered.

3.
Mar Pollut Bull ; 202: 116357, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643587

RESUMO

This study aims to explore microplastic contamination in the sediments of Benoa Bay. Eight locations were sampled, with four duplications denoting the rainy and dry seasons. Based on observations, the microplastic concentration varied from 9.51 to 90.60 particles/kg with an average of 31.08 ± 21.53 particles/kg. The area near the landfill had the highest abundance, while the inlet and center of Benoa Bay and the Sama River had the lowest concentration. The fragments (52.2 %) and large microplastic sizes (64.7 %) were the most documented particles. We also identified 17 polymers, which dominated (37.5 %) by polyethylene, polypropylene, and polystyrene. There were no appreciable variations in abundance between seasons, although there were substantial variations in shape and size. Comprehensive investigation, adequate policies, continuous monitoring, and reducing waste from land- and sea-based sources that engage various stakeholders must be implemented urgently to prevent the release of microplastic into the aquatic ecosystem.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38573581

RESUMO

The total amount of global municipal solid waste (MSW) will reach 3.5 billion tons by 2050, thereby bringing tremendous environmental pressure, especially global warming. Large amounts of greenhouse gases (GHGs) have been released during MSW management (MSWM). Accounting for GHG emissions is a prerequisite for providing recommendations on appropriate treatment options to mitigate emissions from MSWM systems. There are many methods involved in estimating emissions. This paper summarizes the computing models commonly used in each process of the integrated MSWM system and emphasizes the influence of parameters and other factors. Compared with other disposal methods, landfilling has the highest emissions, commonly estimated using first-order decay (FOD) methods. Emission reduction can be realized through waste to energy (WtE) and resource recovery measures. IPCC is commonly used for calculating direct emissions, while LCA-based models can calculate emissions including upstream and downstream processes, whose results depend on assumptions and system boundaries. The estimation results of models vary greatly and are difficult to compare with each other. Besides, large gaps exist between the default emission factors (EFs) provided by models and those F measured in specific facilities. These findings provide a systematic view for a bettering understanding of MSW emissions as well as the estimating methods and also reveal the key points that need be developed in the future.

5.
Mar Pollut Bull ; 202: 116327, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581734

RESUMO

The increasing human population and associated urban waste pose a significant threat to wildlife. Our study focused on the Kelp gull (Larus dominicanus), known for opportunistic feeding in anthropogenic areas, particularly urban landfills. We assessed the physiological status of Kelp gulls at a landfill and compared it with gulls from a protected natural site. Results indicate that gulls from the anthropogenic site exhibited lower levels of key physiological parameters linked to diet, including triglycerides, total proteins, uric acid, plasmatic enzyme activity, body condition index, and leukocyte count, in comparison to their counterparts from the natural site. These findings suggest that Kelp gulls experience inferior physical and nutritional conditions when utilizing anthropogenic sites like landfills governmentally managed.

6.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611776

RESUMO

The aim of this case study was the evaluation of the selected metals' concentration, potential toxic compound identification, cytotoxicity analysis, estimation of the airborne dust concentration, biodiversity, and number of microorganisms in the environment (leachate, soil, air) of the biggest uncontrolled post-industrial landfills in Poland. Based on the results obtained, preliminary solutions for the future management of post-industrial objects that have become an uncontrolled landfill were indicated. In the air, the PM1 fraction dominated, constituting 78.1-98.2% of the particulate matter. Bacterial counts were in the ranges of 9.33 × 101-3.21 × 103 CFU m-3 (air), 1.87 × 105-2.30 × 106 CFU mL-1 (leachates), and 8.33 × 104-2.69 × 106 CFU g-1 (soil). In the air, the predominant bacteria were Cellulosimicrobium and Stenotrophomonas. The predominant fungi were Mycosphaerella, Cladosporium, and Chalastospora. The main bacteria in the leachates and soils were Acinetobacter, Mortierella, Proteiniclasticum, Caloramator, and Shewanella. The main fungi in the leachates and soils were Lindtneria. Elevated concentrations of Pb, Zn, and Hg were detected. The soil showed the most pronounced cytotoxic potential, with rates of 36.55%, 63.08%, and 100% for the A-549, Caco-2, and A-549 cell lines. Nine compounds were identified which may be responsible for this cytotoxic effect, including 2,4,8-trimethylquinoline, benzo(f)quinoline, and 1-(m-tolyl)isoquinoline. The microbiome included bacteria and fungi potentially metabolizing toxic compounds and pathogenic species.


Assuntos
Poeira , Mercúrio , Humanos , Células CACO-2 , Metais , Solo
7.
Sci Total Environ ; 927: 172421, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614334

RESUMO

Relying solely on soil properties may not fully ensure the performance of capillary barrier covers at limiting landfill gas (LFG) emissions. This study proposed to install passive gas collection pipes in the coarse-grained soil layers of capillary barrier covers to enhance their performance at limiting LFG emissions. First, the LFG generation rate of municipal solid waste and its influencing factors were analyzed based on empirical formulas. This information provided necessary bottom boundary conditions for the analyses of LFG transport through capillary barrier covers with passive gas collection pipes (CBCPPs). Then, numerical simulations were conducted to investigate the LFG transport properties through CBCPPs and reveal relevant influencing factors. Finally, practical suggestions were proposed to optimize the design of CBCPPs. The results indicated that the maximum whole-site LFG generation rate occurred at the end of landfilling operation. The gas collection efficiency (E) of CBCPPs was mainly controlled by the ratio of the intrinsic permeability between the coarse- and fine-grained soil (K2/K1) and the laying spacing between gas collection pipes (D). E increased as K2/K1 increased but decreased as D increased. An empirical expression for estimating E based on K2/K1 and D was proposed. In practice, CBCPPs were supposed to be constructed once the landfilling operation finished. It is best to select the fine- and coarse-grained soils with K2/K1 exceeding 10,000 to construct CBCPPs.

8.
Sci Total Environ ; : 172664, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653413

RESUMO

Landfilling is a globally prevalent method for managing municipal solid waste disposal. Nonetheless, the potential for serious contamination and the significant regional disparities in the leachate produced pose varying degrees of risks to groundwater quality. Previous studies have focused on a single landfill or the same geo-climatic conditions, with a limited number of samples having resulted in a narrow distribution of landfill age and scale, which prevents the description of the pattern of change in landfill age and scale. As well as the effect of this change on the contaminants in the landfill leachate and surrounding groundwater is still unclear. Therefore, we sampled and analyzed leachate and surrounding groundwater from 62 landfills with different landfill ages, scales, and operating conditions in a region with dense and varied topography and climate. Aim to explore the effects of different landfill ages, scales, and operating conditions on contaminants in leachate and surrounding groundwater. Findings indicate that pollutant profiles in different media are influenced by the age, scale, and operational status of the landfill, and the impact of leachate on pollutant types and concentrations in groundwater is limited. A significant correlation exists between the concentration of contaminants in the groundwater affected by leaching from the impermeable layer and the age and scale of the landfill when compared to the leachate. The contamination potentials posed by different pollutants vary across environmental media. Total dissolved solids and NH4+-N in leachate presented high contamination potentials, whereas elemental metalloids (Mn, Al, Ba, and Fe) in the surrounding groundwater posed high environmental concerns. These insights furnish new avenues for monitoring, identification, and safeguarding against pollutants in landfills and proximate groundwater, which is imperative for the sustainable management of municipal waste.

9.
Bioresour Technol ; : 130704, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636879

RESUMO

In this study, a SNAD-SBBR process was implemented to achieve ammonia removal and carbon reduction of mature landfill leachate under extremely low dissolved oxygen conditions (0.051 mg/L) for a continuous operation of 266 days. The process demonstrated excellent removal performance, with ammonia nitrogen removal efficiency reaching 100 %, total nitrogen removal efficiency reaching 87.56 %, and an average removal rate of 0.180 kg/(m3·d). The recalcitrant organic compound removal efficiency reached 34.96 %. Nitrogen mass balance analysis revealed that the Anammox process contributed to approximately 98.1 % of the nitrogen removal. Candidatus Kuenenia achieved a relative abundance of 1.49 % in the inner layer of the carrier. In the SNAD-SBBR system, the extremely low DO environment created by the highly efficient partial nitrification stage enabled the coexistence of AnAOB, denitrifying bacteria, and Nitrosomonas, synergistically achieving ammonia removal and carbon reduction. Overall, the SNAD-SBBR process exhibits low-cost and high-efficiency characteristics, holding tremendous potential for landfill leachate treatment.

10.
Environ Pollut ; 349: 123993, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636838

RESUMO

Landfill is a huge pathogen reservoir and needs special attention. Herein, the distribution and spread risk of pathogen were assessed in excavated landfill scenario. The results show that landfill excavation will greatly increase the risk of environmental microbial contamination. The highest total concentration of culturable bacteria among landfill refuse, topsoil and plant leaves was found to be as high as 1010 CFU g-1. Total coliforms, Hemolytic bacteria, Staphylococcus aureus, Salmonella, Enterococci, and Fecal coliforms were detected in the landfill surrounding environment. Notably, pathogens were more likely to adhere to plant leaves, making it an important source of secondary pathogens. The culturable bacteria concentration in the air samples differed with the landfill zone with different operation status, and the highest culturable bacteria concentration was found in the excavated area of the landfill (3.3 × 104 CFU m-3), which was the main source of bioaerosol release. The distribution of bioaerosols in the downwind outside of the landfill showed a tendency of increasing and then decreasing, and the highest concentration of bioaerosols outside of the landfill (6.56 × 104 CFU m-3) was significantly higher than that in the excavated area of the landfill. The risk of respiratory inhalation was the main pathway leading to infection, whereas the HQin (population inhalation hazardous quotient) at 500 m downwind the excavation landfill was still higher than 1, indicating that the neighboring residents were exposed to airborne microbial pollutants. The results of the study provide evidence for bioaerosols control protective measures taken to reduce health risk from the excavated landfill.

11.
J Environ Manage ; 358: 120896, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640758

RESUMO

Combination of oxidation processes are one of the most promising humic acid treatment technologies. Single oxidant or even two oxidants in advance oxidation process can hardly achieve satisfactory removal efficiency of refractory organic matter, mainly humic acid, in the treatment process of reverse osmosis concentrates from landfill leachate. To solve this problem, this study investigated the synergistic degradation of Humic acid (HA) using a Cu and Co supported on carbon catalyst (CuCo/C) in a Hydrogen peroxide (H2O2) with ozone (O3) system. The catalyst was characterized by performing SEM, XRD, BET, XPS and FTIR technologies. UV-vis spectra, 3D Excitation Emission Matrix Spectra (3D-EEM) and gas chromatography-mass spectrometry (GC-MS) were applied for exploring degradation mechanism of HA. To further understand the oxidation mechanism, electron paramagnetic resonance (EPR) was used to evaluate the generation of hydroxyl (·OH) and superoxide radicals (O2·-). As a result, CuCo/C catalyst possessed stable catalytic performance for HA degradation with a wide pH range from 5 to 8, while T = 40 °C,catalyst dosage of 2.4 g/L,O3 intake rate of 0.15 g/min and H2O2 dosage of 1.92 mL/L, the degradation rate of total organic carbon (TOC) achieved 40-46.5 mg·L-1min-1. As affirmed by the EPR, ·OH and O2·- were effectively generated with addition of the CuCo/C catalyst. Degradation performance of UV254 proved that the catalytic activity can still be maintained above 95% with removal rate of 82% after 5 cycles reuse. GC-MS shows that the oxidation products mainly consist of amide, benzoheterocyclic ring and carboxylic acid. This work promotes an effective method for degrading HA, which has the potential for satisfactory application in landfill leachate.

12.
Heliyon ; 10(8): e29356, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644898

RESUMO

Landfills play a key role as greenhouse gas (GHGs) emitters, and urgently need assessment and management plans development to swiftly reduce their climate impact. In this context, accurate emission measurements from landfills under different climate and management would reduce the uncertainty in emission accounting. In this study, more than one year of long-term high-frequency data of CO2 and CH4 fluxes were collected in two Italian landfills (Giugliano and Case Passerini) with contrasting management (gas recovery VS no management) using eddy covariance (EC), with the aim to i) investigate the relation between climate drivers and CO2 and CH4 fluxes at different time intervals and ii) to assess the overall GHG balances including the biogas extraction and energy recovery components. Results indicated a higher net atmospheric CO2 source (5.7 ± 5.3 g m2 d-1) at Giugliano compared to Case Passerini (2.4 ± 4.9 g m2 d-1) as well as one order of magnitude higher atmospheric CH4 fluxes (6.0 ± 5.7 g m2 d-1 and 0.7 ± 0.6 g m2 d-1 respectively). Statistical analysis highlighted that fluxes were mainly driven by thermal variables, followed by water availability, with their relative importance changing according to the time-interval considered. The rate of change in barometric pressure (dP/dt) influenced CH4 patterns and magnitude in the classes ranging from -1.25 to +1.25 Pa h-1, with reduction when dP/dt > 0 and increase when dP/dt < 0, whilst a clear pattern was not observed when all dP/dt classes were analyzed. When including management, the total atmospheric GHG balance computed for the two landfills of Giugliano and Case Passerini was 174 g m2 d-1 and 79 g m2 d-1 respectively, of which 168 g m2 d-1 and 20 g m2 d-1 constituted by CH4 fluxes.

13.
Waste Manag ; 181: 145-156, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608529

RESUMO

Landfill disposal is a major approach of disposing municipal solid waste (MSW) in China. In order to explore the impact of volatile organic compounds (VOCs) generated by landfill on the air quality of regional environment, Jiangcungou landfill in Xi'an and its surrounding area were taken as a research object to analyze the spatial distribution and seasonal variation patterns of non-methane hydrocarbon (NMHC) and VOCs components through seasonal sampling of regional NMHC concentration and VOCs concentration (116 species). CALPUFF model was adopted to analyze the regional dispersion characteristics of NMHC on landfill. In addition, propylene equivalent concentration (PEC) and maximum incremental reactivity (MIR) methods were used to estimate O3 formation potential of the landfill, while fraction aerosol coefficient (FAC) and SOA potential (SOAP) methods were used to estimate SOA formation potential of the landfill. It was indicated that, the component with the highest concentration of VOCs on the working surface and the surrounding area of landfill was p + m-xylene (41.0 µg/m3) and halohydrocarbon (111.2 µg/m3-156.3 µg/m3), respectively. The component with the greatest impact on the surrounding air was acetone, which accounts for 75 %-87 % of the corresponding substance concentration on the landfill. In summer, the surrounding area was affected most by NMHC from landfill, whose emissions contributed 9.5 mg/m3 to the surrounding area. The component making the largest contribution to O3 formation was p + m-xylene (8 %-24 %), while ethylbenzene was the component making the largest contribution to SOA formation (20 %-24 %).

14.
Environ Pollut ; : 123944, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608854

RESUMO

This is the first attempt that investigate the abundance of plasticizers in leachate sediment in the scientific literature, alongside the debut effort to explore the abundance of microplastics and plasticizers in landfill leachate and sediment in Sri Lanka. Microplastics in sizes ranging from ≥2.0 - 5.0 to ≥1.0 - 2.0 and ≥0.5 - 1.0 mm were extracted from the leachate draining from 10 municipal solid waste (MSW) open dump sites and sediment samples covering seven districts. Microplastics were extracted by density separation (Saturated ZnCl2) followed by wet peroxide digestion and the chemical identification was conducted by Fourier Transform Infrared (FTIR) spectroscopy. Plasticizers were extracted to hexane and analyzed by High-performance liquid chromatography (HPLC). The total mean microplastic abundance in leachate was 2.06 ± 0.62 mg/L whereas it was 363 ± 111 mg/kg for leachate sediments. The most frequently found polymer type was polyethylene (>50%), and white color was dominant. The average concentration of Bisphenol A (BPA), Benzophenone (BP) and Diethyl-hydrogen Phthalate (DHEP) in leachate was 158 ± 84.4, 0.75 ± 0.16 and 170 ± 85.8 µg/L respectively. Furthermore, BP and DHEP in leachate sediment was 100 ± 68.3 and 1034 ± 455. µg/kg respectively. As landfill leachate is directly discharged into nearby surface and groundwater bodies that serve as sources of drinking water, the study highlights the potential concerns of microplastic and plasticizer exposure to the surrounding Sri Lankan community through consumption of contaminated drinking water. Therefore, there is a timely need of develop the effective waste management and pollution control measures to minimize the possible threats to both the environment and human health.

15.
Environ Anal Health Toxicol ; 39(1): e2024009-0, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38631401

RESUMO

Insufficient knowledge about the decomposition of microplastics from plastic waste in landfills hinders community involvement in waste management and sorting, posing a new threat to the environment and public health. The present study identifies, characterizes, and quantifies the microplastics in landfills soil sample to determine the latest threats posed by microplastics in the environment, particularly in landfills that are close to residential areas. This research is a descriptive study, with soil samples taken from six points in landfill site in Depok City. The abundance and shape of microplastics were characterized using a microscope, while the microplastic types were identified using Fourier Transform Infrared Spectroscopy (FTIR). The results showed that the abundance of microplastics in the Depok City landfill soil was 60,111.67 particles/kg, with the largest percentage being fragments at 63 %. FTIR functional group characterization showed the presence of plastic types, such as Polyethylene (PE), Polyvinyl Chloride (PVC), Polystyrene (PS), Polypropylene (PP), Polyethylene Terephthalate (PET), and Polyamide. The differences in waste types entering the Depok Landfill caused variations in the number, shape, and type of microplastic samples, and this study provides a foundation for mitigating and biodegrading microplastics in the landfill to minimize environmental impact and protect public health.

16.
Waste Manag Res ; : 734242X241237100, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651362

RESUMO

Properly selecting landfill sites for waste disposal is crucial for mitigating environmental and public health risks. Geographic Information Systems (GISs) and Artificial Intelligence (AI) techniques have emerged as valuable tools for identifying suitable landfill locations. This study presents a systematic mapping study (SMS) that investigates the usage of GIS and AI in landfill site selection. We searched six databases (IEEE Xplore, ACM Digital Library, Science Direct, Emerald Insight, Taylor & Francis Online and Web of Science) using predefined keywords related to landfills, GIS and AI. From 858 initially retrieved articles, we selected 48 relevant articles for in-depth analysis. Our research aimed to answer various questions, such as publication trends, the geographic distribution of case studies, criteria for assessing landfill suitability, tools and techniques employed, preliminary site screening methods, decision-making processes, limitations and future research directions. We used bubble charts, bar charts and tables to visualize the results. The findings of our study highlight the growing interest in using GIS and AI for landfill site selection and emphasize the importance of incorporating multi-criteria decision-making techniques. Furthermore, the results reveal the need for developing more advanced AI models, addressing the limitations of current approaches and exploring novel visualization techniques for enhancing landfill site selection processes. This study provides valuable insights for researchers and practitioners in waste management, environmental science and geoinformatics. It sets the groundwork for future research on improving GIS- and AI-based landfill site selection methodologies.

17.
Water Res ; 256: 121592, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38626614

RESUMO

The cost-effective and environment-friendly sulfur-driven autotrophic denitrification (SdAD) process has drawn significant attention for advanced nitrogen removal from low carbon-to-nitrogen (C/N) ratio wastewater in recent years. However, achieving efficient nitrogen removal and maintaining system stability of SdAD process in treating low C/N landfill leachate treatment have been a major challenge. In this study, a novel electrochemical-coupled sulfur-driven autotrophic denitrification (ESdAD) system was developed and compared with SdAD system through a long-term continuous study. Superior nitrogen removal performance (removal efficiency of 89.1 ± 2.5 %) was achieved in ESdAD system compared to SdAD process when treating raw landfill leachate (influent total nitrogen (TN) concentration of 241.7 ± 36.3 mg-N/L), and the effluent TN concentration of ESdAD bioreactor was as low as 24.8 ± 5.1 mg-N/L, which meets the discharge standard of China (< 40 mg N/L). Moreover, less sulfate production rate (1.3 ± 0.2 mg SO42--S/mgNOx--N vs 1.7 ± 0.2 mg SO42--S/mgNOx--N) and excellent pH modulation (pH of 6.9 ± 0.2 vs 5.8 ± 0.4) were also achieved in the ESdAD system compared to SdAD system. The improvement of ESdAD system performance was contributed to coexistence and interaction of heterotrophic bacteria (e.g., Rhodanobacter, Thermomonas, etc.), sulfur autotrophic bacteria (e.g., Thiobacillus, Sulfurimonas, Ignavibacterium etc.) and hydrogen autotrophic bacteria (e.g., Thauera, Comamonas, etc.) under current stimulation. In addition, microbial nitrogen metabolic activity, including functional enzyme (e.g., Nar and Nir) activities and electron transfer capacity of extracellular polymeric substances (EPS) and cytochrome c (Cyt-C), were also enhanced during current stimulation, which facilitated the nitrogen removal and maintained system stability. These findings suggested that ESdAD is an effective and eco-friendly process for advanced nitrogen removal for low C/N wastewater.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38530522

RESUMO

The Anaerobic Baffled Reactor (ABR) is an effective solution for landfill leachate treatment using an anaerobic fermentation process, which helps to reduce operating costs and sludge volume. To better understand the biological, chemical, and physical processes involved, especially when combining the ABR with an aerobic component, the study aimed to investigate the performance of an Anaerobic-Aerobic Hybrid Baffled Reactor (AABR) that includes an Anaerobic Filter (AF) for treating landfill leachate. This research utilized two glass reactors. The first reactor, designated as AABR-AF, consisted of six independent rectangular glass chambers arranged side by side. The third and sixth chamber designed for aerobic treatment and AF, respectively. The second reactor was used as a control reactor and did not include any aerobic chamber. The highest Removal Efficiencies (REs) for turbidity, COD, BOD, TP, TKN, nitrate, TOC, and TSS in the AABR-AF and ABR-AF were found to be (65.4% and 56.3%), (98.3% and 94.1%), (98.1% and 93.2%), (86.4% and 65%), (89.2% and 76.7%), (81.2% and 64.4%), (88.2% and 79.4%), and (72.4% and 68.5%), respectively. These optimal REs were achieved at an HRT of 48 h and an OLR of 10 kg/m3.d. Also, the highest and the lowest REs in Heavy Metals (HMs) were 89.57% for manganese in AABR-AF and 6.59% for nickel in ABR-AF, in an OLR of 10 kg/m3.d, respectively. The effective removal of Organic Matters (OMs) from landfill leachate using the AABR-AF and ABR-AF was found to be strongly influenced by HRT and OLR. The AABR-AF configuration, featuring a single aerobic chamber in the reactor, exhibited a higher efficiency in removing OMs compared to the ABR-AF configuration.

19.
Sci Rep ; 14(1): 7167, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531941

RESUMO

This study comprehensively explores the compaction and compressibility characteristics of snail shell ash (SSA) and ground-granulated blast-furnace slag (GBFS) in stabilizing local bentonite for landfill baseliner applications. The untreated soil, with a liquid limit of 65%, plastic limit of 35%, and plasticity index of 30%, exhibited optimal compaction at a moisture content of 32% and a maximum dry density of 1423 kg/m3. SSA revealed a dominant presence of 91.551 wt% CaO, while GBFS contained substantial 53.023 wt% SiO2. Treated samples with 20% GBFS and 5% SSA exhibited the highest maximum dry density (1561 kg/m3) and optimal moisture content (13%), surpassing other mixtures. The 15% SSA-treated sample demonstrated superior strength enhancement, reaching an unconfined compressive strength of 272.61 kPa over 28 days, while the 10% GBFS-treated sample achieved 229.95 kPa. The combination of 15% SSA exhibited the highest shear strength (49 kPa) and elastic modulus (142 MPa), showcasing robust mechanical properties. Additionally, the 15% SSA sample displayed favourable hydraulic conductivity (5.57 × 10-8 cm/s), outperforming other mixtures. Notably, the permeability test, a critical aspect of the study, was meticulously conducted in triplicate, ensuring the reliability and reproducibility of the reported hydraulic conductivity values. Treated samples with SSA and GBFS showed reduced compressibility compared to the control soil, with the 15% SSA-treated sample exhibiting a more consistent response to applied pressures. Scanning Electron Microscopy analysis revealed substantial composition changes in the 15% SSA mixture, suggesting its potential as an effective base liner in landfill systems. In conclusion, the 15% SSA sample demonstrated superior mechanical properties and hydraulic conductivity, presenting a promising choice for landfill liner applications.

20.
Waste Manag ; 179: 1-11, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442433

RESUMO

The application of in-situ aeration technology in landfills has been reported to promote fungal growth, but the community diversity and function of fungi in the aerated landfill system remain unknown. This study firstly investigated an in-situ aerated remediation landfill site to characterize the fungal community diversity in refuse. And to further reveal the fungal involvement in the nitrogen cycling system, laboratory-scale simulated aerated landfill reactors were then constructed. The results in the aerated landfill site showed a significant correlation between fungal community structure and ammonia nitrogen content in the refuse. Dominant fungi in the fungal community included commonly found environmental fungi such as Fusarium, Aspergillus, Gibberella, as well as unique fungi in the aerated system like Chaetomium. In the laboratory-scale aerated landfill simulation experiments, the fungal system was constructed using bacterial inhibitor, and nitrogen balance analysis confirmed the significant role of fungal nitrification in the nitrogen cycling process. When ammonia nitrogen was not readily available, fungi converted organic nitrogen to nitrate, serving as the main nitrification mechanism in the system, with a contribution rate ranging from 62.71 % to 100 % of total nitrification. However, when ammonia nitrogen was present in the system, autotrophic nitrification became the main mechanism, and the contribution of fungal nitrification to total nitrification was only 15.96 %. Additionally, fungi were capable of directly utilizing nitrite for nitrate production with a rate of 4.65 mg L-1 d-1. This research article contributes to the understanding of the importance of fungi in the aerated landfill systems, filling a gap in knowledge.


Assuntos
Micobioma , Poluentes Químicos da Água , Nitrogênio , Amônia , Nitratos , Nitrificação , Instalações de Eliminação de Resíduos , Reatores Biológicos , Desnitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...